BioInformatic

Set No. 1

Question Booklet No. 80

12P/212/25

(To be filled up by the candidate by blue/black ball-point pen)

Day and	Date		*********	***********	********	*******	****		(Sigaatur	e of Invig	ilator)	
Serial No	erial No. of Answer Sheet											
Roll No.	coll No. (Write the digits in words)											
Rell No.						•						

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space prvided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Queston Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages : 16 [उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

No. of Questions/प्रश्नों की संख्या : 150

Time/समय : 2½ Hours/घण्टे

Full Marks/पूर्णांक : 450

- Note/नोट: (1) This paper comprises of Two Sections, viz., Section—A and Section—B having 30 Multiple Choice Questions in Section—A, and 120 Multiple Choice Questions in Section—B comprising 40 questions of Biology, 40 questions of Chemistry and 40 questions of Physics. A candidate has to attempt all 150 questions.
 - (2) Attempt as many questions as you can. Each question carries **3** marks. **One** mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - (3) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

Section-A

MATHEMATICS

L If x is real, then
$$\left|\frac{5-x}{3}\right| < 2$$
 if and only if

(1) -1 < x < 11 (2) +1 < x < 11 (3) x < 11 (4) x > 11

- 2. If $\left(\frac{x}{y}\right) = \left(\frac{5}{3}\right)$, then $\frac{(x+y)}{(x-y)}$ is equal to (1) 4 (2) 2 (3) -2 (4) -4
- 3. The value of following expression is

(1) 1 (2) 0 (3)
$$x^{1/abc}$$
 (4) $x^{1/(ab+bc+ac)}$

4. The quadratic equation whose one root is $3+2\sqrt{3}$ will be (1) $x^2+6x-3=0$ (2) $x^2-6x-3=0$ (3) $x^2+6x+3=0$ (4) $x^2-6x+3=0$

- $(3) \ x + 0x + 3 = 0 \qquad (4) \ x 0x + 3$
- 5. The one value of x in following equation is

$$\sqrt{\frac{x}{1-x}} + \sqrt{\frac{1-x}{x}} = \left(\frac{13}{6}\right)$$
(1) $\frac{5}{13}$ (2) $\frac{7}{13}$ (3) $\frac{9}{13}$ (4) $\frac{11}{13}$

6. The set $\{x:(x-2)(x-3)>0\}$ is equal to

- (1) $\{x: 2 < x < 3\}$ (2) $\{x: x < 3\} \cup \{x: x < 2\}$
- (3) $\{x:x>3\} \cup \{x:x<2\}$ (4) $\{x:<2 \le x \le 3\}$

7. If $f(x) = x^2$ and $g(x) = x^3$, x being real, then

- (1) f is one-one but g is not one-one (2) f is not one-one but g is one-one
- (3) neither f nor g is one-one (4) both f and g are one-one

- 8. A boy goes to the school with the speed of 3 kmph and returns with the speed of 2 kmph. If he takes 5 hours in all, then the distance between village and school is
- (1) 6 km
 (2) 7 km
 (3) 8 km
 (4) 9 km
 (4) 9 km
 (4) p km
 (1) p = q
 (2) p = -q
 (3) 2p = 3q
 (4) p = 2q
 (4) p = 2q
- (1) an obtuse angle
 (2) a right angle
 (3) an acute angle
 (4) a supplementary angle

STATISTICS

11. If the data has very high fluctuating values, then which of the measure of central tendency will be the best?

	(1) Arithmetic mea	n	(2) Geometric mean	n
	(3) Median		(4) · Mode	
12.	The mean deviation	a about mean of data	a 9, 10, 16, 21, 24 i	8
	(1) 5.0	(2) 5.1	(3) 5·2	(4) 5·3
13.	The average value o is	f the median of 2, 8, 3	3, 7, 4, 6, 7 and the r	node of 2, 9, 3, 4, 9, 6, 9
	(1) 9	(2) 8	(3) 7.5	(4) 6
14.	The sum of all the	relative frequencies	in a sample is equal	to
	(1) the sample size	•	(2) half of sample	size
	(3) one		(4) infinity	
15.	The following is da	ta of wages per day		
	5, 4, 7, 5	5, 8, 5, 8, 3, 8, 5, 7, 9,	, 5, 7, 9, 10, 8, 2, 8, 6	5, 1, 8
	The mode of this d	ata is		
	(1) 7	(2) 5	(3) 8	(4) 3
16.	The standard devia	tion of data [7, 9, 11, 1	13, 15] is	
	(1) 2.4	(2) 2.5	(3) 2.7	(4) 2.8

17. A frequency polygon is constructed by plotting frequency of the class-interval at the

- (1) upper limit of class-interval (2) lower limit of class-interval
- (3) mid-value of class-interval (4) any value of class-interval

18. The median of a given frequency distribution is graphically found with the help of

- (1) histogram (2) pie-chart
- (3) frequency curve (4) ogives
- 19. A mode is
 - (1) least frequent value (2) most frequent value
 - (3) highest value (4) middle most value

20. If numbers are 1, 2, 3, 4, 5, 6 \cdots (n-2), (n-1), n, then mean of these numbers is

(1)
$$\frac{(n+1)}{2}$$
 (2) $\left(\frac{n}{2}+1\right)$ (3) $\frac{n}{2}$ (4) $\frac{(n-1)}{2}$

COMPUTER

21.	Which of following is primary memory?							
	(1) CD	(2) Hard disk	(3) DVD	(4)	RAM			
22.	Which of the follo	wing printers is	best one for print	quality?				
	(1) Dot-matrix pri	nter	(2) Drum p	rinter				
	(3) Daisey chain	printer	(4) Laser pi	rinter				
23.	The term VGA is a	related to						
	(1) CD	(2) hard disk	(3) printer	(4)	monitor			
24.	Which of the follow	wing is input an	d output device bo	oth?				
	(1) Mouse	(2) CD	(3) Monitor	(4)	Keyboard			
25.	The software which	h manages all ti	ne resources of a c	computer sy	stem is called			
	(1) language softw	/are	(2) operatin	g system				
	(3) anti-virus		(4) MS-Offic	e				
26.	The URL is called							
	(1) Uniform Resou	rce Locator	(2) Universa	al Resource	Locator			
	(3) Universal Read	l Line	(4) Uniform	Read Line				
				noud milo				
27.	The WWW is calle	đ						
	(1) Word Wide We	eb	(2) Word W	ith Web				
	(3) World With We	eb	(4) World W	ide Web				

28. FTP	is	known	as
----------------	----	-------	----

- (1) File Transfer Procedure (2) File Transfer Protocol
- (3) Folder Transfer Protocol (4) Folder Transfer Procedure

29. MICR is known as

- (1) Magnetic Instruction Computer Recorder
- (2) Magnetic Ink Character Recorder
- (3) Magnetic Instruction Character Recogniser
- (4) Magnetic Ink Character Recogniser
- 30. Which of the following is not a well-known file type?
 - (1) System file (2) Program file (3) Data file (4) Character file

Section-B

BIOLOGY

31.	The scientist who proposed the five kingdom systems of classification of organism was								
•	(1)	Lamarck	(2)	John	Ray	(3)	Linnaeus	(4)	Whittakar
32.	The	e specific epithet	of p	ootato	is				
	(1)	Solanum				(2)	Solanum tubero	sum	
	(3)	Tuberosum				(4)	Solanum tubero	sum	linn
33.	The livi	e phenomenon w ng system is	hich	helps	in maint	ainir	ng a constant in	tern	al environment in a
	(1)	feedback mecha	misn	n		(2)	operon concept		
	(3)	homeostasis				(4)	osmoregulation		
34.	In	syngenesious typ	e of	.stame	ens				
	(1)	both anthers ar	nd fi	lamen	ts are free	:			
	(2)	both anthers ar	nd fi	lamen	ts are fuse	ed			
	(3)	filaments are fu	ised	and a	nthers are	e fre	0		
	(4)	anthers are fus	ed a	nd file	ments are	e fre	e		
35.	Gyı	nnosperms differ	fro	m ang	iosp e rmou	s ta:	xa in		
	(1)	presence of fibr	es a	nd tra	cheids				
	(2)	absence of toru	s an	d boa	rded pits				
	(3)	presence of nak	ed s	seeds a	and absen	ce o	f vessels		
	(4)	absence of poly	emb	ryony					
					8				

36.	Endosperm in aggiosperms is							
	(1) haploid	(2) diploid	(3) triploid	(4) tetraploid				
37.	Anthocyanin pigme	nt is present in	L					
	(1) chloroplast	(2) chromopla	st (3) leucoplast	(4) vacuole				
38.	Climbing roots are	found in	· .					
	(1) Asparagus	(2) betel	(3) orchids	(4) screw pine				
39.	The elongated thick	c walled and tag	pering cells are					
	(1) parenchyma ce	lls	(2) sclerenchyn	natous fibres				
	(3) collenchyma ce	lls	(4) aerenchyma	a cells				
40.	Which one of the f	ollowing statem	ents/definitions is cor	rect?				
	(1) The helicase er	zyme winds the	e two DNA strands					
	(2) The short stret	ches of DNA, ea	ach primed by RNA a	re called Okazaki fragments				
	(3) Transcription is	s accomplished	by RNA polymerase					
	(4) the coiling tens	sion in replication	ng DNA is reduced by	Topoisomerases				
41.	Subviral entities de	woid of their ov	vn DNA/RNA are calle	ed				
	(1) Gemini viruses	(2) meta virus	ses (3) prions	(4) Caulimo viruses				
42.	Plasmids are groups	s of genes found	in the extra chromosor	nal state and composed of				
	(1) circular double	stranded DNA	(2) single stran	nded DNA				
	(3) double strande	d RNA	(4) single stran	ded RNA				

9

- 43. Select the incorrect statement
 - (1) Vaucheria possesses multiflagellate zoospores called synzoospores
 - (2) Chlamydomonas nivalis causes the red snow
 - (3) The red colouration of real sea is due to a blue green alga Trichodesmium erythreum
 - (4) Batrachospermum is a marine alga
- 44. Which one of the following is the incorrect statement?
 - (1) Claviceps purpurea is the source of ergot
 - (2) Work on Nurospora resulted in one gene one enzyme concept
 - (3) Parasexuality was discovered in Aspergillus nidulans
 - (4) In Pencillium the condidiophores arise from the foot cell
- 45. Select out the incorrect statement
 - (1) Sporophyte of Riccia is simplest consisting of capsules only
 - (2) In Marchantia Anthridia and Archegonia are borne on Anthridiophores and Archegoniophores
 - (3) Lycopodium is homosporous and Selaginella is heterosporous
 - (4) Origin of seed habit is indicated by the bryophytes like Polytrichum or Funarea
- 46. The vascular system in the rhizome of maiden hair fern is usually
 - (1) protostele (2) saprophytic (3) symbiotic (4) epiphytic
- 47. In a test cross which one of the following is always used?
 - (1) Homozygous recessive (2) Heterozygous recessive
 - (3) Dominant factor (4) Removal of the nucleotide

4S.	Choose the incorrect statement								
	(1) DNA replication is unidirectional								
	(2) DNA replication begins at a specific nucleotide sequence	(2) DNA replication begins at a specific nucleotide sequence							
	(3) Synthesis of new DNA strand is catalysed by the enzyme DN	IA polymerage							
	(4) Okazaki fragments are joined together by DNA ligase								
49.	9. Nutmeg of commerce which is extensively used as spice belongs	to the genus							
	(1) Myristica (2) Eugenia (3) Cinnamomum (4)	Strychonos							
50.	50. Which of the following plants is the source of Bhang Banja Char	ras and fiber?							
	(1) Linum usitassimum (2) Cannabis sativa								
	(3) Crotolaria juncea (4) Corchorus capsularis								
51.	1. Which of the following polymerases does not require template for polynucleotide chain?	the synthesis of a							
	(1) RNA polymerase (2) DNA polymerase								
	(3) Poly A polymerase (4) Telomerase								
52.	2. Thyrotropin is secreted from								
	(1) thyroid gland (2) pituitary gland								
	(3) parathyroid gland (4) hypothalamus								
53.	3. In human total number of cranial nerves is								
	(1) 10 pairs (2) 12 pairs (3) 31 pairs (4)	43 pairs							
54.	4. Jointed appendages are the characteristics of the phylum								
	(1) Arthropoda (2) Mollusca								
	(3) Echinodermata (4) Annelida								

.

55. The basal metabolic rate is controlled by (1) pituitary gland (2) adrenal gland (3) gonads (4) thyroid gland 56. How many polar bodies are formed during oogenesis in ovary? (1) 4 (2) 3 (3) 2 (4) 1 Yellow fever is transmitted by 57. (1) Culex (2) Aedes (3) Anopheles (4) Bedbug 58. Parental care in male is done in (1) Hippocampus (2) Labeo (3) Anabas (4) Scoliodon 59. The correct sequence of protein (P) and lipid (L) in the cell membrane is (4) P-L-L-P (1) L-P-L-P (2) L-L-P-P (3) L-P-P-L 60. The enzymes of Electron Transport Chain (ETC) are present in (1) inner membrane of mitochondria (2) outer membrane of mitochondria (3) mitochondrial matrix (4) cytosol 61. The largest living invertebrate is (3) giant octopus (4) giant starfish (1) giant squid (2) giant snail Insulin is secreted in islets of Langerhans by 62. (3) γ cells (4) pancreatic acini (1) α cells (2) β cells

63.	The concept of Mobile Gene' was first given by							
	(1) Crick		(2)	Khorana				
	(3) Barbara McClir	ntock	(4)	Lamarck				
64.	For explaining the n by	nechanism of enzyme	e acti	on, the 'lock and	key	model' was proposed		
	(1) Koshland	(2) Lehninger	(3)	Krebs	(4)	Fischer		
65.	The gene required :	for male sex determi	inatio	on is				
	(1) TRY	(2) GRY	(3)	SRY	(4)	HRY		
		1.11			- 1 1	- Ale Anglesiana		
66.	The DNA site for it	olding the specific pr	rotein can be identified by the technique					
	(1) DNA sequencin	g	(2)	DNA fingerprint	ting			
	(3) DNA imprinting	g	(4)	DNA foot printi	ng			
67.	The molecular phot	tocopier is						
	(1) DOD	(O) -1	(2)		(4)			
	(I) PCR	(2) electroporator	(3)	sequencer	(+)	ger DOC		
68.	The folding of indiv	vidual polypeptide is	mad	le possible by				
	(1) kistones	(2) non-histones	(3)	chaperons	(4)	zinc finger		
69.	The repressible ope	eron is						
	(1) trp operon	(2) lac operon	(3)	met operon	(4)	arab operon		
70.	The termination co	don is						
	(1) AUG	(2) UUU	(3)	UAA	(4)	UUA		

CHEMISTRY

71. The species that is not aromatic according to Hückel's rule as

72. Total number of all the chloroethanes that could be produced by free-radical chlorination of ethane is

(1) ten (2) nine (3) seven (4) six

73. Arrange the following compounds in order of increasing acidity

A) Benzoic acid	(B)	p-Chlorobenzoic acid
C) <i>p</i> -Toluic acid	(D)	p-Nitrobenzoic acid
Code :		

(1) A < B < C < D (2) A < C < B < D (3) C < B < A < D (4) C < A < B < D

74. The end product in the following sequence of reactions is

PhCH₂COOH $\xrightarrow{\text{NH}_3} A \xrightarrow{\Delta} B \xrightarrow{P_2O_5}$? (1) PhCH₂CN (2) PhCH₂CONH₂ (3) PhCH=NOH (4) PhCH₂CH₂NH₂

- 75. Phenolic esters upon heating with anhydrous $AlCl_3$ are converted into o- and p-hydroxy ketones. This reaction is called
 - (1) Claisen rearrangement (2) Fries rearrangement
 - (3) Friedel-Crafts reaction (4) Houben-Hoesch reaction

76. Arrange the following compounds in order of their decreasing λ_{max}

- 80. Which one of the following substrates will undergo nucleophilic substitution reaction most readily?
 - (1) $CH_3CH=CHCl$ (2) $CH_3CHClCH_3$
 - (3) CH_3CH_2COCI (4) $CH_2=CHCH_2CI$

81. Base catalysed hydrolysis of oils or fats is called

- (1) neutralization (2) saponification (3) denaturation (4) polymerization
- 82. Which of the following are not permissible sets of quantum numbers for an electron in an atom?

	n	1	m	S				
(A)	3	2	1	$\frac{1}{2}$				
(B)	2	3	-1	$-\frac{1}{2}$				
(C)	3	2	-3	$\frac{1}{2}$				
(D)	3	2	0	$-\frac{1}{2}$				
Cod	le :							
(1)	(A) and (I	3)			(2)	(C)	and	(D)
(3)	(A) and (4	C)			(4)	(B)	and	(C)

83. The increasing order of electronegativities of C, N, F and O elements is

(1) C < N < O < F (2) F < O < N < C (3) C < O < N < F (4) O < N < C < F

84. The substance used as moderator and coolant in nuclear reactors is

- (1) liquid H₂ (2) heavy water
- (3) ordinary water (4) liquid NH₃

85. The azimuthal quantum number (1) of $3d_1^1$ electron is

(1) 1 (2) 2 (3) 3 (4) 4

86.	The number of electrons (n) taking part in the following chemical reaction is								
	$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}$ +14H ⁺ + ne^{-} \longrightarrow 2Cr ³⁺ +7H ₂ O								
	(1) 3	(2) 14	(3) 7	(4) 6					
87.	Which one of the f	ollowing is a basic o	xide?						
	(1) Li ₂ O	(2) Al ₂ O ₃	(3) CO ₂	(4) ZnO					
88.	The oxidation state	of Cl in $HClO_4$ is							
	(1) + I	(2) + III	(3) + IV	(4) + VII					
89.	The outer electroni	c configuration of va	nadium is						
	(1) $4s^2 3d^3$	(2) $4s^1 3d^4$	(3) 4s ⁰ 3d ⁵	(4) $3d^3 4p^2$					
90.	Which of the follow	ring has tetrahedral	geometry?						
	(1) Fe(H ₂ O) ²⁺ ₆		(2) $[Co(NH_3)_6]^{3+}$						
	(3) Ni(CO) ₄		(4) $Zn(NH_3)_6^{2+}$						
91.	[ICl ₂] ⁻ has								
	(1) two lone pairs		(2) three lone pairs	S					
	(3) one lone pairs		(4) no lone pairs						
92.	Which of the follow	ring ions is colourles	s in aqueous solutio	m?					
	(1) Fe ³⁺	(2) Mn ³⁺	(3) Ti ³⁺	(4) Sc ³⁺					

93.	The	acid rain is no	t as	sociated with				
	(1)	NO ₂	(2)	SO ₂	(3)	со	(4)	CO ₂
04	The second			· · · · · · · · · · · · · · · · · · ·		ta la		
94.	The	compound havi	ing i	ine largest bond	ang	le 18		
	(1)	H ₂ S	(2)	NH 3	(3)	CH₄	(4)	CO ₂
95.	For	a second order	read	ction				
	(1)	$t_{1/2} \propto a$	(2)	$t_{1/2} \propto \frac{1}{a}$	(3)	$t_{1/2} \propto \frac{1}{a^2}$	(4)	$t_{1/2} \propto a^2$
96.	The	ionic theory of	elec	trolysis was give	n by	,		
	(1)	Arrhenius	(2)	Dalton	(3)	Faraday	(4)	Bohr
07	/ Th a	at manata and all a						
9 7.	Ine	structure of dia	unioi					
	(1)	tetrahedral	(2)	hexagonal	(3)	octahedral	(4)	cubic
•••		-	.			_		
98.	Joui	e-Thomson coef	ncie	nt for an ideal g	as 1	S		
	(1) :	zero	(2)	positive	(3)	negative	(4)	infinite
			_				•	
99.	The for 1	half-life period o 100 days, the au	ofaı mou	radioactive eleme nt of remaining	nt is radi	20 days. If 64 g oactive element	of th woul	his element is Id be
	(1)	16 g	(2)	бg	(3)	8 g	(4)	2 g
	1-1	0	·/	- U	1.1	- 4		<u> </u>

stored

The effect of temperature on heat of reaction is given by 100. (2) Joule-Thomson equation (1) Clausius-Clapeyron equation (4) Gibbs-Helmholtz equation (3) Kirchhoff's equation 101. $k = Ae^{-E/RT}$ is known as (2) Arrhenius equation (1) Eyring equation (3) Gibbs equation (4) Maxwell equation The quantum yield of the reaction $2HBr \xrightarrow{hv} H_2 + Br_2$ is 102. (3) 1 (4) 0 (2) 2 (1) 3 Which of the following equilibria is heterogeneous? 103. (2) $C_2H_6 \rightleftharpoons C_2H_4 + H_2$ (1) $2SO_2 + O_2 \Rightarrow 2SO_3$ (3) Fe $_2O_3 + CO \rightleftharpoons CO_2 + 2FeO$ (4) $30_2 \neq 20_3$ 104. Clapeyron-Clausius equation is (1) $\frac{dP}{dT} = \frac{\Delta H}{T \wedge V}$ (2) $\frac{dG}{dP} = \frac{\Delta H}{T}$ (4) $\frac{dH}{dT} = \frac{dS}{T}$ (3) $\frac{dG}{dT} = \frac{\Delta S}{T \wedge V}$

- 105. The order of radioactive decay reaction is
 - (1) first (2) second (3) third (4) zero

106.	6. Unit of dipole moment is					
	(1) Coulomb	(2) Dalton	(3) Einstein	(4) Debye		
107.	7. The extent of hydrogen bonding is maximum in					
	(1) dimethylamine		(2) diethyl ether	r		
	(3) ethanol		(4) ethyl acetate	•		
		· ·				
108.	. The rate constant of reaction depends on					
	(1) time	(2) temperature	(3) mass	(4) weight		
109 .	A compound shows absorption bands at 1800 cm^{-1} and 1750 cm^{-1} in its IR spectrum Identify the compound					
	(1) RCHO	(2) RCOR	(3) RCOCI	(4) (RCO) ₂ O		
110.	How many signals w	ould be seen in the	¹ H NMR spectrum of	of the following compound?		

(2) Four (1) Three

(3) Seven (4) Ten

20

PHYSICS

- 111. The dimensions of the quantities in one of the following pairs are the same. Identify that pair
 - (1) Torque and work (2) Angular momentum and work
 - (3) Energy and Young's modulus (4) Light year and velocity of light

112. A particle is moving towards east with a velocity 5 m/sec. In 10 sec the velocity changes to 5 m/sec towards north. The average acceleration in this case is

(1)	$\frac{1}{2}$ m/sec ² towards north-west	(2) $\frac{1}{2}$ m/sec ² towards north-east
(3)	$\frac{1}{\sqrt{2}}$ m/sec ² towards north-west	(4) $\frac{1}{\sqrt{2}}$ m/sec ² towards north-east

113. A large mass M and a small mass m hang at the two ends of a string that passes over a smooth tube. The mass m moves around a circular path which lies in a horizontal plane. The length of the string from the mass m to the top of the tube which is vertical makes the angle θ . What should be the frequency of rotation of the mass m so that the mass M remains stationary?

(1) $\frac{1}{2\pi}\sqrt{\frac{ml}{Mg}}$ (2) $\frac{1}{2\pi}\sqrt{\frac{Ml}{mg}}$ (3) $\frac{1}{2\pi}\sqrt{\frac{mg}{Ml}}$ (4) $\frac{1}{2\pi}\sqrt{\frac{Mg}{ml}}$

114. Indicate the correct statement about the reference frame attached to earth

- (1) It is an inertial frame because the earth is rotating with constant speed about its own axis
- (2) It is an inertial frame because Newton's laws are applicable in this frame
- (3) It cannot be inertial frame because the earth is revolving around the sun
- (4) It is an inertial frame by definition

115. A carpet of mass M made of inextensible material is rolled along its length in the form of cylinder of radius R and is kept on a rough floor. The carpet starts unrolling without sliding on the floor when a negligible small push is given to it. The horizontal velocity of the axis of the cylindrical part of the carpet when its radius reduces to $\frac{R}{2}$ is

(1)
$$V = \sqrt{\frac{7gR}{3}}$$
 (2) $V = \sqrt{\frac{14gR}{3}}$ (3) $V = \sqrt{\frac{5gR}{3}}$ (4) $V = \sqrt{\frac{10gR}{3}}$

116. The relation between the displacement x and the time t of a body of mass 2 kg moving under the action of a force is given by $x = \frac{t^3}{3}$, where x is in metre and t in second. The work done by the force on the body in the first 2 sec is

(1) 1600 joules (2) 160 joules (3) 80 joules (4) 16 joules

117. An artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of escape velocity from earth. If the satellite is stopped suddenly in its orbit and allowed to fall freely onto the earth, then the speed with which it hits the surface of the earth $(q=98 \text{ m/sec}^2 \text{ and radius of earth} = 6400 \text{ km})$ is

- (1) 11.2 km/sec (2) 22.4 km/sec (3) 5.6 km/sec (4) 25.8 km/sec
- **118.** The following four wires are made of the same material. Which of these will have the largest extension when the same tension is applied?
 - (1) Length 300 cm, diameter 3 mm
 - (2) Length 200 cm, diameter 2 mm
 - (3) Length 100 cm, diameter 1 mm
 - (4) Length 50 cm, diameter 0.5 mm

119. Suppose a tunnel could be dug through the earth from one side to the other along a diameter and a particle of mass m is dropped into the tunnel. If we neglect frictional forces and assume that the earth has uniform density ρ , then the particle will execute SHM with

(1)
$$T = \sqrt{\frac{6\pi}{G\rho}}$$
 (2) $T = 2\pi \sqrt{\frac{3}{G\rho}}$ (3) $T = \sqrt{\frac{3\pi}{G\rho}}$ (4) $T = 2\pi \sqrt{\frac{6}{G\rho}}$

- 120. Two cells of 1.25 V and 0.75 V are connected in parallel, the effective voltage will be
 - (1) 2 V (2) 0.5 V (3) 0.75 V (4) 1.25 V
- 121. A wire of length 0.5 m and carrying a current of 1.2 amp is placed in a uniform magnetic field of induction of 2 tesla. If the magnetic field is perpendicular to the length of wire, then the force on the wire will be
 - (1) 0·4 N (2) 4·8 N (3) 2·4 N (4) 1·2 N
- 122. The work function of a photoelectric material as 3.3 eV. Its threshold frequency will be
 - (1) 8×10^{16} Hz (2) 8×10^{14} Hz (3) 1.6×10^{15} Hz (4) 2.4×10^{15} Hz
- **123.** At frequencies above resonance frequency in a series resonant circuit the impedance of the circuit is
 - (1) inductive (2) capacitative (3) resistive (4) substantive
- 124. On increasing the temperature of N-type semiconductor its Fermi level
 - (1) moves towards conduction band
 - (2) moves into the conduction land
 - (3) moves towards the position of intrinsic Fermi level
 - (4) moves below the intrinsic Fermi level

- 125. In Zener diode the Zener breakdown is caused due to
 - (1) breaking of valence bands due to high velocity of minority carriers in depletion region
 - (2) breaking of valence bands due to high electric field in the depletion region
 - (3) breaking of valence bands due to high velocity of majority carriers in neutral region
 - (4) electron hole pair generation due to thermal agitation
- 126. A carrier wave of 1 kW is amplitude modulated by an audio signal. If the modulation index is 60%, then the total power in the wave will be
 - (1) 1.36 kW (2) 0.36 kW (3) 0.18 kW (4) 1.18 kW
- 127. A black body events radiation of maximum intensity at a wavelength of 5000 Å when the temperature of the black body is 1227 °C. If the temperature is increased by 1000 °C, the maximum intensity would be observed at
 - (1) 2754 Å (2) 3000 Å (3) 3260 Å (4) 5000 Å
- 128. Which of the following particles cannot be accelerated by cyclotron?
 - (1) Proton (2) Deuteron (3) Electron (4) a particle
- 129. Weizsacker's semi-empirical mass formula does not include
 - (1) pairing energy (2) magicity energy
 - (3) Coulomb energy (4) asymmetry energy
- 130. The half-life of a radio isotope is 5 years. The fraction of atoms in this isotope decayed after 15 years will be
 - (1) $\frac{7}{8}$ (2) $\frac{5}{8}$ (3) $\frac{3}{8}$ (4) $\frac{1}{8}$

131. The Fourier series given below

$$y = A + \frac{2A}{\pi} \sum_{r=1}^{\infty} \frac{1}{r} \sin r \omega t$$

represents a

- (1) sawtooth wave (2) square wave
- (3) triangular wave (4) rectangular wave
- 132. If the equation for the electric field of an electromagnetic wave propagating in a medium is given by

$$E = 10 \sin 2\pi \left[\frac{4t}{10^{-9}} - \frac{2x}{.03} \right] \text{ volt/metre}$$

then the velocity and wavelength of the wave are

- (1) 0.3×10^8 m/sec, 0.03 metre (2) 0.6×10^8 m/sec, 0.015 metre
- (3) 3×10^8 m/sec, 0.3 metre (4) 6×10^8 m/sec, 0.03 metre

133. The Maxwell's equation $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ represents (1) Ampere's law (2) Gauss law (3) Biot-Savart law (4) Faraday's law

134. The condition that any vector \vec{A} should be the curl of another vector is that

- (1) $\vec{\nabla} \times \vec{A} = 0$ (2) $\vec{\nabla} \cdot \vec{A} = 0$
- (3) $\vec{\nabla} \times \vec{A} \nabla^2 \vec{A} = 0$ (4) $\vec{A} = -\nabla\phi$

135. Which of the following Boolean expressions is equivalent to an OR gate?

(1) $Y = A + \overline{A} \cdot B$ (2) $Y = \overline{A \cdot B}$ (3) $Y = A + A\overline{B}$ (4) $Y = \overline{(A + B)}$

- 136. A solenoid has an inductance of 50 henry and a resistance of 30Ω . If it is connected to a 300 V battery, then how long will it take for the current to reach one-half of its final steady state value?
 - (1) $1.6 \sec$ (2) $1.55 \sec$ (3) $1.28 \sec$ (4) $1.15 \sec$
- 137. Indicate the false statement regarding the early effect in case of the transistor
 - (1) Base current decreases with increasing $|V_{CB}|$
 - (2) Emitter current increases with increasing $|V_{CB}|$
 - (3) Common base current gain decreases with increasing $|V_{CB}|$
 - (4) Common emitter current gain increases with increasing $|V_{CB}|$
- 138. Indicate the false statement about the high frequency $(\omega > \omega_p)$ electromagnetic wave propagation through low pressure ionized gases
 - (1) Phase velocity is greater than the velocity of light in free space
 - (2) \vec{E} and \vec{H} waves are in phase
 - (3) Waves are attenuated in passing through the ionized gas
 - (4) E/H in ionized gases is larger than in free space
- 139. Indicate the false statement about the rectifiers
 - (1) Peak inverse voltage for FW rectifier is twice that of half-wave rectifier
 - (2) Output DC voltage for FW rectifier is twice that of half-wave rectifier
 - (3) Ripple factor for FW rectifier is about half of that for HW rectifier
 - (4) Rectification efficiency for FW rectifier is about half of that for HW rectifier
- 140. Copper has a conductivity σ of 5.80×10^7 mhos/metre. The skin depth at 1 MHz in copper is
 - (1) 56 microns (2) 66 microns (3) 44 microns (4) 27 microns

141. At 1 atmospheric pressure $(P = 1.03 \times 10^8 \text{ N/m}^2)$, 1 gm of water having a volume of 1 cm³ becomes 1671 cm³ of steam when boiled. The heat of vaporization of water is 539 cal/gm at 1 atm. The internal energy of the system during this process

(1)	increases by 498 cal	(2)	decreases	by	370	cal
(3)	increases by 580 cal	(4)	decreases	by	710	cal

142. According to van der Waals equation of state of a gas the critical temperature of any gas is given by

(1) $\frac{2a}{Rb}$ (2) $\frac{4a}{25Rb}$ (3) $\frac{a}{27b^2}$ (4) $\frac{8a}{27Rb}$

143. An ideal gas heat engine operates in a Carnot cycle between 227 °C and 127 °C. It absorbs 6.0×10^4 cal at the higher temperature. How much work per cycle is this engine capable of performing?

(1) $2 \cdot 0 \times 10^4$ joules (2) $5 \cdot 0 \times 10^4$ joules (3) $12 \cdot 0 \times 10^4$ joules (4) $3 \cdot 0 \times 10^4$ joules

- 144. If we pour some drops of water between the plate and lens in Newton's ring experiment, then the rings
 - (1) will decrease in diameter (2) will increase in diameter
 - (3) will become elliptical (4) will disappear
- 145. A circularly polarized light can be distinguished from unpolarized light by passing it through a
 - (1) polarizing sheet (2) half-wave plate
 - (3) quarter-wave plate (4) Nicol prism

- 146. If α is equal to half of the phase difference between the rays from the top and bottom of the single slit, then the values of α , at which intensity maxima for single slit diffraction are obtained, are given by
 - (1) $\sin \alpha = \alpha$ (2) $\tan \alpha = \alpha$ (3) $\cot \alpha = \alpha$ (4) $\sin^2 \alpha = \alpha$
- 147. X-rays of wavelength 10×10^{-12} metre are scattered from a target. If the value of the constant $\frac{h}{mc} = 2.425 \times 10^{-12}$ metre, then the maximum wavelength present in the scattered X-rays will be
 - (1) 11.21×10^{-12} metre (2) 14.85×10^{-12} metre
 - (3) $12 \cdot 425 \times 10^{-12}$ metre (4) $17 \cdot 28 \times 10^{-12}$ metre
- 148. What guide wavelength does 10 cm radiation (free space wavelength) exhibit in a rectangular waveguide whose width is 6.0 cm? Assume the dominant mode
 - (1) 12 cm (2) 24 cm (3) 36 cm (4) 18 cm
- 149. An electron has a speed of 300 metres/sec accurate to 0.01%. With what fundamental accuracy can we locate the position of electron? Mass of electron is $9 \cdot 1 \times 10^{-31}$ kg and Planck's constant = $6 \cdot 6 \times 10^{-34}$ joules/sec
 - (1) 2.4 cm (2) 1.2 cm (3) 1.8 cm (4) 3.6 cm
- **150.** A diffraction grating has 10^4 lines over 1 inch. It is illuminated at normal incidence by sodium light ($\lambda_1 = 5890$ Å and $\lambda_2 = 5896$ Å). What is the angular separation between the first-order maxima of these lines?

(1)	1.2×10^{-4} radian	(2)	$2 \cdot 4 \times 10^{-4}$	radian
(3)	0.6×10^{-4} radian	(4)	1.8×10^{-4}	radian

D/2(352)-200

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृंत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पुष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। अहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं० और ओ० एम० आर० पत्र सं० की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 1. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल औ०एम०आर० उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।